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The Ising model is studied by the generating functional approach in order 
to provide a better understanding of that method. It is shown how to derive 
a general solution of a functional equation in terms of infinite-dimensional 
integrals. This solution is not unique; the different possibilities are characteriz- 
ed by different paths of integration. Further, the saddle point approximation 
is used for the integrals in order to obtain second-order correlation functions. 
It is shown that besides the "normal" solution, one obtains several anomalous 
ones, which correspond directly to the nonphysical solutions of the transfer 
matrix method for treating the partition function. It is also shown that only 
the correct solution can give a realistic behavior of the correlation function 
at large distances. The relevance of the saddle point methods for describing 
phase transitions is also discussed. 

KEY WORDS: Correlation functions; functional formalism; Ising model; 
integral solutions; saddle point approximation. 

1. I N T R O D U C T I O N  

Func t i ona l  me thods  p rov id ing  an u l t imate  hope  for  going beyond  conven-  
t iona l  a p p r o x i m a t i o n  methods  are now widely used in m a n y b o d y  theory  and  
s tat is t ical  mechanics ,  a,2) Their  essential  a t t rac t ion  lies in the  fact  tha t  they  
fo rmula te  these fo rmidab le  p rob lems  in an  appea l ing  and  condensed  
(a l though formal )  way. Thei r  difficulties are  main ly  o f  a ma themat i ca l  
nature ,  and  especial ly when deal ing with  func t iona l  integrals ,  their  r igorous  
mean ing  m a y  be quest ioned.  Fur the r ,  they have no t  been able  to p rov ide  
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much more than conventional approximation methods. In order to look for 
their potentialities for the provision of more general methods, it seems to be 
important to investigate them in detail for models such as the Ising model, 
where many exact results are known. 

Recently, Schwabl (3) has studied the generating functional of the 
correlation functions for the Ising model, and obtained a functional differen- 
tial equation of this. The general approach is similar to that of the present 
author. (~) In Ref. 4, the generating functional approach to the continuum 
gas was studied and functional integrals were obtained as formal solutions 
of the basic equations. These integrals were not unique, since different 
integrations paths could be admitted. This ambiguity occurs since we are 
dealing with an infinite system where no end can be assigned for the chain of 
equations of correlation functions. It was argued that the different solutions 
may correspond to different phases and that they are intimately connected 
with the complex limiting structure of the partition function. Further, 
molecular field equations occur very naturally from this approach as condi- 
tions for saddle points of the integrals. (5) It is then an interesting question 
whether each solution corresponds to a unique saddle point solution, and if 
therefore the number of  molecular field solutions reflects the nonuniqueness 
of the basic problem. In the Ising model the different solutions should, 
according to the discussion in Ref. 4, correspond to different eigenvalues of the 
transfer matrix used in the solution of this problem. (G) The molecular field 
equations are widely studied for this problem, which therefore provides a 
suitable field for testing the basic ideas. 

Another important task of this work is to study the meaning of the 
saddle points of the integral solutions for the correlation functions. The 
equations for these points, discussed in Ref. 5, yield generalizations to the 
molecular field equations, but are far more complicated since, besides being 
nonlinear, they lose the homogeneous character of the latter. In order to see 
what can be obtained from these equations and what is required to achieve 
a workable result, we find it useful to study these equations in a comparatively 
simple limit case. 

We start in Section 2 by discussing the general arguments, and show, in a 
simple way, that Schwabl's equation has different solutions corresponding 
to different eigenvalues of the transfer matrix. In Section 3 we use an integral 
transform for solving the basic equation. This solution is much the same as 
the integral representation of Siegert. (7) It also has, however, the interesting 
feature of being nonunique. Its properties, together with the saddle point 
equations, are discussed in Section 4. 

We finally remark that some of the solutions are immediately found to be 
nonphysical. In spite of this, we think that they are important in this context 
since we believe that the principle of getting nonequivalent solutions is 
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fruitful for the study of  general phase transitions. In order to do so, more 
should be known about the solutions and how to find the correct one. There- 
fore, at this first stage it seems to be more appropriate to study the simplest 
possible situation rather than one that is physically more interesting but where 
no exact results are known. 

2. C O R R E L A T I O N  F U N C T I O N S  IN T H E  IS ING CASE 

The Hamiltonian of the problem is given by 

= Z - Z ( l )  
i j  i 

where cr i = ~ 1 and the indices i, j stand for the atoms of a lattice. We use 
essentially the same notations as in Ref. 3. Here K.:j and h are the dimension- 
less interaction and magnetic field parameters, 

K~j = v i /~T  and h = txB/KT (2) 

We put Ke~ = 0. Often we have only nearest-neighbor interactions 

Kij = ~KIo if i , j  nearestneighbors 
otherwise (3) 

The partition function is 

Z ~ exp(�89 (4) 
cq 3 4 - 1  id  " 

Correlation functions are, as usual, 

(n) g~z'"i, = O~ z )  Z ( % %  "" % )  e-"ff~ < % %  "'" % )  (5) 
a i = 4 - 1  

We also introduce a generating functional: 

(n )  X F[x] = ~ ~ (1/n 0 gq ...i, i~ "'" xi,, 
n a l l  i 

= ( l /Z)  ~ exp 1~ x icr i -  [H({a})/KT]{ 
{o} t 1 

--= ( l /Z) 2 exp ( 1  2 cric~,Ki, -k 2 Bi(zi) (6) 

where, for convenience, we put Bi = h + xi �9 
We assume that the interaction is of  a finite range, i.e., Kij = 0 for atoms 

i and j separated by more than a given distance. In that case the problem can 
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always be formulated by a transfer matrix ~6) A relating the state of a group of  
atoms, which may consist of  lines or sheets, with that of the other atoms inside 
their interactions range. If there are n such groups, the partition function is 

Z -  T r A  ' ~ = Z A s "  (7) 

where {As} are the eigenvalues. In fact, we can write 

A = ~ A~e~, e~ "e~ = 8~e~ (8) 
c~ 

The components of  A are denoted by the letter r, which in general is a vector, 
indicating the configuration of the corresponding group of atoms. We assume 
S to be an operator which involves a finite number of groups, and for the 
configurations rz,  r2 ,... obtain values S(rz ,  r2 ...). Then, for the average of  
S, we obtain (the correlation functions are averages of this kind): 

( s )  = ( l /Z) Z S(r~, r~ .... , r~) A(~ ,  r~) 
a l l  r 

• A(r~ ,  rs) ... A ( r ~ ,  r~+t) A . . . .  (r,~+l, rz) (9) 

provided we have periodic boundary conditions. 
If  we use (8) and assume 

[A~/A~I < 1, all ~ @/3 (10) 

for sufficiently large n, we have 

(S)~ = (1/A~ ~) ~ S(r~ .... , r~) A(r l  , rz) "" A(r~  , r~+ 0 eB(r~+l, rO 
a U  r 

(11) 

Irrespectively of the assumption (10), Eq. (11) defines a welldefined average 
associated with the eigenvalue A~. It  was argued in Ref. 4, that, if we have a 
linear chain of equations for determining averages of  this type, all (S)~ 
should be solutions of these equations. The reason for this is that when the 
relevant parameters are continued into a complex space, for any ]3, there are 
regions U B where (10) is valid. In such a region (11) is a true solution, which in 
general is well-defined everywhere except, possibly, for singularities on some 
set of zero measure. Because of the linearity of the equations, (11) also should 
be a solution outside the region where (I0) is valid and where it is the " t rue" 
solution. 

The situation is simplest for the one-dimensional Ising model with 
nearest-neighbor interactions. Then, the matrix A has elements 

1 r A(e, ~') = exp[+ ~Kee + �89 § ~')] (12) 
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with eigenvalues 

AI,~ = e+K/2(cosh h) ~ (e +x sinh2h + e x)~/2 

The e matrices can be written as 

(13) 

[ cos20 cos 0 sin 0) [ sin20 --cos 0 sin 0) 
e~ = Xcos 0 sin 0 sin ~ 0 ' e~ = k--cos 0 sin 0 cos 20 

(14) 

where 

tan 0 = (2 +2K sinh2h § 1)1/"2 -- e +• sinh h (15) 

Then for a chain of n atoms 

Z - - - - T r A  ~ = A z  ~ + A 2  n~-~A~ n ([Anl is the largest) (16) 

@ia~+.} = (I/Z) Z cr/~+.A"(cr~, c~+.) A'~-"(cr~+., cry) (17) 
(li,c~i+l~ 

The limit functions are 

t /.t r (a~cr~+.}~ = Z (l/An") (~cr A (or, (/) e.((7, ~) 
( 7 , a '  

= cos 2 20 + (A~/A.)" sin 2 20 (18) 

I f h = 0 ,  weget  

(ai, ai+,>l = tanh"K, (ai~i+,>2 = tanh-"K (19) 

Here, (14) and (15) have been used. 
llt is easy to see that the limit function (.-.>2 increases with/x, and thus 

behaves nonphysically. This fact can immediately be generalized to the 
general case, given by (9). It is then found that the nonphysical solutions 
for the correlation function between atoms which are sufficiently far apart 
from each other always increase with the distance. This fact seems to be the 
most suitable one for selecting the correct solutions in methods of this kind. 
The increase depends on terms (A~/A~),, which can always make the cor- 
relation function increase if An is not the largest eigenvalue. For  large 
(this parameter describes the separation) such terms will dominate the 
correlation function. The free energy of the different solutions ("phases") 
can be defined to be NkT times the negative logarithm of the corresponding 
eigenvalue. The correct solution, evidently, is given by the largest eigenvalue 
and our condition above is therefore equivalent to choosing the solution 
with the smallest free energy. 
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We first show how the different solutions occur in the chain of  equations 
for correlation functions in the case of  the one-dimensional nearest-neighbor 
Ising model. Schwabl obtained the following equation for the second-order 
correlation function (put @icri+,) = g , ,  go = 1): 

g ,  _ 1_( g,_l + g,+0 tanh 2K = �89 3,.0(sech~2K + 1 - -  gz tanh22g) (20) 

For  the Fourier transform defined by C(k) = Z~o~ g,e i"k this yields 

C(k) = 7(1 - -  tanh 2K cos k) -1 (21) 

where ~, is the expression on the righthand side of  (20). Then, g,  is obtained 
using 

f ~ e i"1~ 
g" - -  2~r _,~ 1 - -  �89 2K)(e ik + e -is) dk 

fc  XlUl = 2zr~ x - -  �89 2K)(x 2 -+- 1) dx = ~, • (sum of residues) (22) 

C is a closed curve. The integrand has poles at x~ = tanh K and x~ = coth K. 
The residues yield 

g2 ) = y(tanh K) I"! cosh 2](, g(2) = - -7( tanh K) -I"1 sech 2K (23) 

The definition of ~ then yields 

g(1) (tanh K) I"l, g~(~) (tanh K) -I"l (24) bL ~ 

which are the ones previously obtained. We note that with this method 
Schwabl calculated ~(1) which is, of  course, the only physically acceptable 
solution. From our point of  view, however, the other solution is of  equal 
interest. 

3. T H E  F U N C T I O N A L  E Q U A T I O N  A N D  ITS S O L U T I O N  

We shall start with the expression for the generating functional F[x] 
in (6). 

Schwabl obtained the following linear equation for F: 

(e/#xi)F[x] = [tanh (xi + h +  ~ Ki, O/~xJ)lF[x] 
J 

(25) 

There are several integral representations for the generating functional (7,s) 
based on the general definitions. Here we shall derive such a representation 
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from Eq. (25). This will not provide any new kind of integral but it will be 
important for getting more information about the equation. 

We note that the expression 

q~i(Bi) = exp (piBi - �89 2 Ai,B,:Bs) (26) 

with Bi = xi -[- h is an eigenstate of  the complicated tanh operator in (25) 
provided that A~- = A~ satisfies 

KisAsx., = 3il~ (27 )  
J 

The eigenvalue is tanh(Zj K~sp~). Therefore, we look for a solution of the 
form: 

F[x] = C fs ~ dpi [exp (~ piB~ -- �89 ~ A,sBiBs)]f[p] (28) 

where S is some integration path, and C a constant, chosen such that F[0] = l. 
This is a solution if ( i ) fobeys  the equation 

[pi --  tanh Z K~spj] f[p] = ~, Aij ef[Pll@~ 
J 

(29) 

and (ii) S is such that 

The solution of (29) is 

[exp ,<..,,,..)} rI co . ( , ,)  

Condition (30) means that f [ p ]  shall vanish at the boundaries of  S. Therefore 
on S either (a) the p variables go from -- oo to § oo passing regions where 
Re ~ Kisp,~pj is bounded below (in order to make the absolute value of the 
integrand bounded), or (b) the p variables vary along the imaginary hyper- 
plane between points pi ~ where the cosh factors vanish. The pi ~ are defined as 

~, Kispj ~ = (n q- �89 rri (32) 
J 

n being any (positive or negative) integer. It is also possible that a combination 
of  the different ways of  integration exists. Generally, symmetric paths with 
respect to the origin shall be chosen. 
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Formulas (28) and (31) with the choice (a) for S can directly be trans- 
formed to the Siegert integral (7) if one puts 

Pi -- ~ Ai~Bt~ ~ ui (33) 

Then 

(34) 

The integration path of type (a) is the only one which appears from a direct 
transformation of  the sum of the last part of  (6). As mentioned above, this 
sum has a strict meaning only for finite systems. In that case, no ambiguity 
should occur. In the infinite system, however, the limit can be nonunique. 
The form of  Eq. (25) is not changed in the limit but a constraint on its 
solutions for correlation functions of  very large order will disappear. This is 
what introduces the ambiguity. We therefore expect the anomalous type 
(b) solutions to be meaningful in some sense for the infinite system. This is in 
accord with the ideas of  Ref. 4. 

We here make a few remarks about the paths of  integration. As the 
quadratic form ~ K~uiu~ is not necessarily positive-definite, we should instead 
transform it to a diagonal form (accomplished by a Fourier transformation) 
and integrate the variables in an appropriate way along the real and the 
imaginary axes. Since the basic equation (25) is linear, any linear combination 
of solutions is also a solution. The true solution shall be chosen as the one 
with lowest free energy which fulfills important physical restrictions. The free 
energy can be directly calculated from the knowledge of the second-order 
correlation function. 

Clearly there are very many solutions. Most of  the solutions, however, 
are far too irregular to be accepted. In addition, there are evidently solutions 
with a broken symmetry, i.e., for which ( ~ )  = ~F[x]/Sx does not vanish for 
x~ = h ~ 0. This property is not shared with the representations from the 
partition function approach, where the first-order correlation functions 
always vanish. The "anomalous" property occurs for asymmetric paths, e.g., 
between ~ K i j p j - ~  i ( 2 n -  1)7r/2 and i(2n-Jr-1)~-/2 or from ~ Kijp~ = 
i(2n § 1)~/2 to infinity. We see that linear combinations of such paths can 
yield symmetric ones with the "normal"  symmetry property (~ r i )=  0. 
Further, from the symmetric structure of the integrals it follows that paths 
which are reflections of each other in the real hyperplane yield complex 
conjugate results, and therefore correspond to solutions (possibly combina- 
tions) of  the same real eigenvalues. For  this reason, anomalous, asymmetric 
solutions can only be accepted if they yield degenerate symmetric solutions 
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(of degenerate eigenvalues). This is a well-known condition for symmetry- 
breaking solutions in, e.g., matrix methods. 

4. T H E  S A D D L E  P O I N T  A P P R O X I M A T I O N  

The most-used approximation of infinite integrals of the type above is the 
saddle point approximation. We shall demonstrate this method here for the 
case of the second-order correlation function. For simplicity, h is put equal to 
zero. We write 

<crkc @ = F~Z/Fo (35) 

where 

Fo -~ fs l-I dpi [exp ( - � 89  ~ Ki~pipj)] ~ cosh (~  .Kcjpi) (36) 

and 

F~Z= fs l-[ dp, [exp (--�89 ~ Kijpip~)] sinh (~  K~pj)sinh (~  K~jp 0 

• i•k,,I-[ cosh (~  Ki, p 0 (37) 

Saddle points of the integrands are obtained when (presuming K~-j can be 
inverted) 

for F0: ~, = tanh ( 2  K,j/Sj) (38) 
3 

c o ,  = + 

+ ( 1 -  8 i ~ -  Sir)tanh (~  Ki~ffj) (39) 

Equation (38) becomes the familiar molecular field equation: 

= tanh(2Ki0) (40) 

if we assume ~ is independent of i, i.e.,/5~ = ~, Z~" K~j = K. This is also the 
equation obtained in the appendix, where some of its properties are discussed. 

When integrating along the (a) type of path [i.e., the Fom'ier sums of the 
Pi are integrated from -- oo to q- oo (or --ioo to +ioo according to the signs 
of the eigenvalues of K~j)], this equation yields a maximum when all p~ = 

= 0 when 2K < 1, and two maxima at points p~ = :Li0 = 0 when 2K > 1. 
In the latter case the origin is a minimum. The integration along the type (b) 

8z2/7/3-z 
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path closest to the origin (namely ~ Kispj: --irr/2-,. i~r/2) has a converse 
structure: There are two maxima for 2K < 1 and one maximum (at the origin) 
when 2K > 1. In general, when there are several maxima the approximated 
integral should be the sum of  their contributions. 

Equation (39) is more complicated since it distinguishes two lattice 
points k and l (the indices should be looked upon as vectors). For points far 
away from these we should get the solution of (38): 

Pi(k l ) -  > Pi = P l/-zzl,l/-gl-~ (41) 

In fact, the solutions converge fairly rapidly toward this value (at least 
unless 2K ~ 1). 

There is a symmetry property in (39) for points around the point rn == 
(k + l)/2. The solutions are either symmetric or antisymmetric with respect 
to that point: 

either p,~_, = ~ + ,  or ~ _ ,  -~ - - ~ + ,  (42) 

If  the asymptotic point/~ of (41) is not zero, only the symmetic solution is 
possible. (Note that m and/x need not be points of the lattice.) The complete 
expression shall be the sum of the contributions of these solutions, which 
yield the two maxima of the integral. 

As for the factors of the integrand of (37), the cosh factors are essentially 
the same for the symmetric and the antisymmetric solutions. The two sinh 
factors, however, get different signs. In order to get the sum of the contri- 
butions of the symmetric and the antisymmetric solutions, it is then necessary 
to know the difference of the sinh factors in these cases. Some consideration 
shows that this difference is essentially determined by the difference between 
the corresponding solutions for the ~ values in the middle of the interval 
between k and l. 

In order to show the general features of Eq. (39), we consider the one- 
dimensional case, and also restrict ourselves to the limits of large and small K. 
(There is no difficulty in one dimension in obtaining a numerical solution for 
the general case. The qualitative features are, however, apparent already in 
the limiting cases.) The equations in one dimension are, with nearest-neighbor 
interactions, 

~i(kl) = tanh{K[ y)i_l(kl) + i~/+z(kl)]}, i =/= k, 1 

~k(kl) = coth{K[ p~_z(k/) -+- P~+z(k/)]} (43) 

~z(kl) = coth{K[ p~_z(kl) + ~,+l(k/)]} 

When K is small ( 4  1), for the "normal" solution, fi~ and i~ become large. 
P~-I, P~+I, fi,-a, and p~+z are not small, but the rest are of order K or less. 
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In fact, for  i < k - -  1 (assume l > k) 

Pi ~-" KF)i+, and /37~-1 ~ tanh(K/57~) (44) 

We get similar relations for  i > l q- 1. Fo r  i between k and l, the situation is 
also similar, the /~  decrease rapidly when i goes f rom k or l toward the central 
point  m. The situation, however,  depends on the distance I l -  k]  and also 
upon  the symmetric character  o f  the solutions. In fact, the symmetric and 
antisymmetric solutions in (42) yield the same contr ibut ion in first order,  and 
higher-order  terms must  be considered to get the correct  expression. 

For  l = k -+- 1, one gets 

/~ = coth[K(/5 z q-/Sk_z) ] ~ coth(K/3• ~ 1/~/R (45) 

provided t5 l = ~ >~/~k-1 �9 There is no antisymmetric solution in this case. 
Fo r  l = k q- 2 the symmetric solution yields 

~,~ = coth[K(IF~-z q-Plc+I)] % 1/K(pk-1 ~, p~+,) 

~_1 ~ tanh(K/3~) ~ tanh[1/(p~_, -k P~+I)] (46) 

P~+I = tanh(2Ki~) ~, tanh[2/(pk_z q-P~+I)] 

or i f x  is the solution o f x  = tanh(1/x) § tanh(2/x), 

/3k-z = tanh(1/x), /-~k+z = tanh(2/x) (47) 

The antisymmetric solution is given by 

Pk+l = 0, ff~ ~ 1/K~k_l, /~k-z is the solution o f  x = tanh(1/x) (48) 

When l > k q- 1 the points between k and l are important .  We get the 
following: 

I. l ----- k q- 2v; m = k q- v belongs to the lattice: 

/5~ s ~ K(~-z) / '~+l  , . ~  = 0 ( 4 9 )  

2. l = k q- 2v q- 1; m does not  belong to the lattice: 

-/)~+v+l = /~+v  ~ K{v-z)P/~+l = tanh[K(/3~+~-I q-/51~+*)] 

( 5 0 )  

-~ = -~ "-*- = tanh[K(/Sk+. 1 - -  f i / : + l ) ]  --Pk+~+l q-Pk+~ ~ K Pk+l 

f rom which we obtain 

- ~  ( K ~ - Z  v - Pk+, ~ q- K ) P~+z, ~ ~ (K ;-z - -  K)pk+z (51) 
k+v 
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We then use these points in the integrals (36) and (37). The integrands 
are transformed to the form 

f[/3] exp{--K~;[/31 8~8~} (52) 

where 8e = p~ --/3i and higher-order terms are neglected. Equation (35) is 
then obtained in the form 

A[/3(kl)]fo[P] {' Det{Ko.[p]} )zt', ( % c r , ) -  , - (53) 
Det{,c~j[/3(kl)]} 

From above, we see that for small K, f0 ~ 1. The important f l  terms are 
primarily the sinh factors and the difference between the symmetric and 
antisymmetric expressions. These terms yield the K dependence. The two 
sinh factors are each proportional to ~/R7 if I = k q- 1 and to K otherwise. 
From the formulas (46)-(51) one finds that the difference between the sym- 
metric and antisymmetric solutions is proportional to K It-~-~) if l > / k  q- 2. 
Therefore f lifo is proportional to K I~-k). The determinants of the ~e matrices 
both turn out both to be proportional to KN/~, where N is the number of 
lattice points. Thus, we get 

(a~az) ~ KIZ-< (54) 

which is the right behavior. It is not as easy (but not impossible) to get the 
numerical factor. Primarily because the integral gets important contributions 
from regions where higher-order terms of the hyperbolic functions are 
appreciable, this factor does not come out correctly in this approximation 
except for the case I = k q- 1, when it becomes equal to one, as it should. 

The situation for large K is simpler. Then, from (43), one finds that all 
Pi are approximately equal to one (or minus one). (There is no antisymmetric 
solution in this case.) Then, for all finite distances [ l -- k[  the correlation 
functions become one, as they should. 

Finally, we briefly discuss the behavior of the "anomalous" solution 
where the p~ are integrated along the imaginary axis, and 

-- 7r/2 ~< Im ~ Kij pfl ~< 7r/2 

The saddle points of (38) are given by 

= tan 2K2 (55) 

where p = ix. The positive solution for small K is 

= x0 = (~r/4K) -- (4fir) -? O(K) (56) 

(i.e., 2KYc ~ ~r/2, cos 2K2 ~ K). In this case, the main behavior close to the 
saddle point is determined by the (now) trigonometric factors, which vary 
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more rapidly than the Gaussian. In the F1 integral of  (39), we do not get any 
maximum for the sine factors, which together with the Gaussian, increase in 
the entire interval. Its arguments Z K~jpj, i = k or l, should therefore be at 
the boundary. With this constraint, the maximum point can be obtained as 
before. The convergence toward the value in (56) is slower than it was 
earlier. As before we expand around the maximum points and get an 
expression exp(--~c~j ~xi Sxj). In this case the matrix K~j is in lowest order 
independent of K, in contrast to the previous case, where it was proportional 
to K. Each of the cosh factors (now cos factors !) of (36) and of (37), for at 
least i ~ k and i>~ l (l > k assumed), is proportional to K and the 
corresponding quotients of these factors in the approximate expression are 
of order one. For  the factors in (36), this fact is obtained from (56). In (37) 
for i < k and i > t, the --4/~- term of (56) is replaced by a constant which 
becomes equal to that value as I i -- k ] and ] i -- l [ go to infinity. Close to 
k and l, this constant is dependent on K and is small. Because of  this, all the 
quotients of the cos factors for i < k and i > l in the approximate integrals 
yield a factor proportional to K. 

For  points i between k and l, the sums ~ K O j  are no longer close to 
~r/2 and, correspondingly, the cosh factors are of  order one instead of K. This 
means that in the quotient F1/Fo we get a factor 

1 /Kfrom sinh [ ~  K, jY~o(kl)]/cosh [~ K, j2j] 

or from cosh [ ~  Kij2~(kl)]/cosh [~ Ki~Y~j] 

for every i such that k ~< i ~ l. The result is therefore 

((rkcr~) ~-~ K-I~-zt (57) 

as it shall be for the anomalous solution. Because the ranges of the approxi- 
mating Gaussians are not small, the numerical coefficient can not be expected 
to come out correctly. 

5. D I S C U S S I O N  

Before going deeper into the results of the previous sections, there are a 
few important questions that remain to be cleared up. The first concerns 
a subsidary condition, which is a direct consequence of (6): 

~ F [ x ] / e x ?  = Fix] (58) 

This relation was used by Schwabl. It can be shown that the functional 
equation with this condition must have a unique solution for a finite system. 
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It is also easily seen that among the integral representations derived above, 
only the one with the integral path of type (a) fulfills (58) strictly. However, 
it is also quite clear that the importance of the functionals lies very much in 
the fact that they provide the correlation functions. It is therefore only 
necessary that (58) have a local meaning. It follows from the integral represen- 
tations that, for an infinite system, 

~2 ~ ~ 
~ x i  2 ~ x  h "'" ~ x j ~  F[x]  ~ ~ x  h .. .  ~x j , ,  F[x ]  (59) 

when all x~ are zero for all finite m for any of the possible solutions. Therefore 
all solutions are acceptable if (58) is considered in its local sense (59). 

Another question is related to the problem of "too many solutions" 
already mentioned. The actual number of solutions is certainly smaller than 
the number provided by possible integration paths. The way out of this 
seems to be the fact that the solutions are linearly dependent and that different 
paths can give rise to the same correlation function. At the moment, however, 
it seems difficult to prove this statement in general (as most things are 
difficult to do directly with functional integrals). 

We have found in this work that the functional equations for the Ising 
model have numerous solutions. From the discussions of the limiting cases 
of the one-dimensional model it is seen that the functional integral solutions 
really correspond to the true structure of the partition function. This is 
probably a general situation and the study of the "anomalous" solutions 
should therefore be a meaningful task since they can enter as "condensed" 
states of the system. 

An interesting remark, which also was made by Schwabl, is that the 
functional approach is not a good one for the Ising model, where other 
methods give much more precise results in an easier way. However, the 
Ising model is not studied here for its own sake but for the aid it offers us in 
understanding other systems better. In fact, the continuum system is in 
many respects simpler than the lattice system in the functional presentation. 

Among the important conclusions of the work is the statement, dis- 
cussed in Section 2, that the "false" correlation functions behave in an 
unrealistic way. As was said there, this is an important criterion for choosing 
the correct solution. There are also always symmetry-broken solutions, 
yielded by asymmetric integration paths; such solutions are often found in 
molecular field theories, which here correspond to saddle points. The treat- 
ment shows that such solutions can only be accepted physically if it can be 
shown that there are degenerate solutions. In the molecular field approach the 
integrals along the "anomalous" paths are in fact negligible compared with 
the normal integral and, therefore, apparently proportional (the propor- 
tionality factor being zero). This is the reason why solutions of broken 
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symmetry turn up. Strictly speaking, the contributions of all saddle points 
should be added. The mere occurrence of  anomalous solutions in molecular 
field equations is therefore in a strict sense never an indication of a phase 
transition. What must be shown is in some way the proportionality of  the 
integrals. It may be possible to show this by saddle point methods, and, as 
discussed above, it suffices to show that the anomalous correlation functions 
(here given by the bounded imaginary integration paths) behave physically. 
I f  this can be shown in a limiting case of e.g., low temperatures, where the 
saddle point method is most likely to yield reasonable results, it is a clear 
indication that a phase transition has taken place. 

A P P E N D I X  

We briefly discuss the one-variable equation 

dx + t a n h  x + a  f ( x )  = 0 (A.1) 

The equation is closely related to the multidimensional one discussed 
here. Its features are important for us to study in order to get a better under- 
standing of  the functional treatment. By the method of this paper, we can 
obtain the general solution in terms of  integral transforms: 

f ( x )  = C fs  dp exp[--(x2/2a) -- xp -- �89 ~] cosh ap 

= C' ( du [exp(--�89 cosh(au + x) (A.2) 
J s  

The integration paths can be: 

b 1 : 

b2 : 

Type (a). S, S': -- oo --~ + o~ 

Type (b). Symmetric parallel to the imaginary axis: 

S: --�89 --~ �89 S': x -- �89 ~ x q- �89 

S: --i(n q- �89 --i(n --  �89 i(n --  �89 ~ i(n + �89 
S': the same + x  

By these integration paths, we are sure to get df(x) ldx  = 0 when x = 0. 
For  other, asymmetric paths, we can get df(x) /dx =/= 0 for x = 0 (corre- 
sponding to nonzero magnetization). 

We look for the saddle point approximation for the integrals represen- 
tatingf(0).  The saddle point occur for 

u ----- tanh au (A.3) 
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It is easily seen that the saddle points are either along the real or (most of  
them) the imaginary axis. For the (b~) paths, there is always one saddle point 
on each of the two symmetric components. For  the (a) and the (b~) paths, the 
situation is slightly different. When a < 1 there is no saddle point on the real 
axis but only at u = 0, which yields a maximum. On the (bz) path there are 
two maxima for u v a 0 and a minimum at u = 0. When a > 1 the situation on 
these paths is reversed. The only real value of a for which saddle points 
coincide is a = 1 at u = 0. 
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